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SUMMARY 
The motion of a viscous fluid contained between two rotating, 

circular cylinders whose axes are set slightly apart is considered. 
The equations of viscous motion are linearized by expanding the 

stream function in the form 2 $n y”, where yisa parameter which 

depends on the distance between the cylinder axes. The ensuing 
analysis appears to hold for all values of the fluid viscosity v, and 
in particular for small values of v. 

The asymptotic behaviour of the solutions for small v is 
examined, attention being mainly confined to the first order 
stream function $, and the corresponding component of vorticity 
cl. Outside the boundary layers, where, for small v, $, may be 

expanded asymptotically as 2 $‘2’vn/2, the terms 5‘:) of the corres- 

ponding expansions for the vorticity are shown to be uniform 
throughout the fluid. It is noted that the asymptotic expansions 
of $,for the region of the boundary layers and for the region outside 
the boundary layers may be combined in a single expansion which 
holds in both regions. The leading terms of this expansion are 
calculated by boundary layer methods. 
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1. INTRODUCTION 
This paper is concerned with a viscous motion whose governing equations 

may, in principle, be solved exactly. The asymptotic behaviour of the 
solution when the fluid viscosity v is small is derived and discussed and a 
procedure formulated by which the higher order corrections to the boundary 
layer approximation may be determined. Inasmuch as the streamlines 
of the motion are closed the results bear particularly on closed flows. 

Now, the boundary layer approximation, as conceived by Prandtl, 
determines the stream function $ of a steady two-dimensional motion with 
an error which is, in general, O(UL{v/UL)) in the boundary layer and 
O( UL{v/ UL}1’2) elsewhere, U and L being respectively a typical speed and 
a typical length of the motion, For certain configurations even this 
accuracy cannot be attained. If for example the fluid impinges on a sharp 
edge as in the uniform streaming past a flat plate, the Prandtl approximation 
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fails to determine the stream function correctly near the edge. More 
serious difficulties attend the shedding of a boundary layer to form a wake. 
Such configurations aside, the problem remains of how best to determine 
the higher order corrections to the original approximation. 

One correction can be made at once; that is, the displacement of the 
streamlines outside the boundary layer caused by the slow movement of 
fluid inside the layer can be calculated. In a recent paper, Kaplun (1954) 
has shown that by suitable choice of coordinates the solution of the boundary 
layer approximation can be made to hold throughout the whole region of 
flow and made to include, outside the boundary layer, the effects of dis- 
placement thickness. 

In  order to formulate a procedure for determining the higher order 
corrections, it is helpful to have as a guide one or more exact solutions to 
the equations of motion, whose asymptotic behaviour for small v has been 
elucidated. One such solution, though for an unsteady motion, has been 
analysed by Lagerstrom & Cole (1955). Lagerstrom & Cole consider 
the motion set up by a uniformly expanding circular cylinder moving 
parallel to its axis in unbounded fluid. The exact solutions obtained by 
Lagerstrom & Cole are of the form 

m 

n=O 
z,h - 2 2?,t(r, t ,  V ) V - ~ ’ ~ + O  ( v - ~ ’ ~ ) ,  

where the coefficients 9?’2 are significant in the boundary layer and 
elsewhere are transcendentally small, and they propose, from general 
considerations (which are not stated), that the stream function of steady 
motion with no wake may be generally represented in the form 

m m 

n=O f i = O  
z,h - 2 $%(r)v-n/z + 2 9%(r, V ) V - - ~ ’ ~  + o (v-ml2), 

where the first term represents the truncated asymptotic series for # at a 
fixed point r. 

The example considered in the following concerns the motion of fluid 
between two rotating, circular cylinders whose axes are parallel and set 
slightly apart. When the separation of the cylinder axes is small compared 
with the difference in length of their radii the equations of motion may be 
solved by a perturbation method. Moreover the perturbation expansions 
appear to hold uniformly for all v, providing that the expansion parameter is 
sufficiently small. The solution therefore determines the asymptotic 
behaviour of the motion when v is small. 

2. LINEARIZATION OF THE EQUATIONS OF MOTION 

We begin by defining the perturbation expansions and deriving equations 
of motion for the first order terms. 

Let the radii of the two cylinders be a, b and the distance between their 
axes U E .  Take polar coordinates r ,  0 in any cross-section, with origin at the 
axis of the inner cylinder and reference line 0 = 0 along the radius to the axis 
of the outer cylinder (see figure 1). Introduce further the non-dimensional 
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coordinates p, 4 defined in terms of r ,  0 by 

S + Y  
1 +Y5’ 

z = a -  

The circular sections of the inner and outer cylinders are then the coordinate 
linesp = 1 andp = /3; where 

/ i  

I 
\ I  / 

Figure 1. 

The remaining coordinate lines p = constant and C$ = constant constitute 
the two orthogonal pencils of circles generated by the circular cylinder sections 
The coordinate mesh is clearly the same as that of the two-dimensional 
bipolar system in which the cylinder sections are coordinate lines. The 
coordinate variables p, 4 are however different, having been modified so as to 
have the advantage in this problem of degenerating to polar variables Y, B 
when the cylinders are coaxial (e = y = 0). 

The rotary motion between cylinders is supposed two-dimensional and 
may therefore be represented in terms of a non-dimensional stream function 
4, the velocity components in the coordinate directions p increasing, 4 
increasing, being respectively 

F.M. L 
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where q1 is the peripheral speed of the inner cylinder. 
in effect the Jacobian of the transformation (1) and is defined by 

The function J is 

( 5 )  
(1 + 2yp cos # + y2p2)2 

(1 -Y2I2 
J =  

On eliminating the pressure, the equations of motion reduce to 

where 5 is the axial component of vorticity, R is the Reynolds number, 
defined here by aql/v, and, in both equations, 

(In using q1 as a typical speed, it has been tacitly assumed that the inner 
cylinder is not at rest. If it were at rest, the typical speed could with only 
trivial changes be taken to be the peripheral speed q2 of the outer cylinder.) 
The boundary conditions at the inner and outer cylinders are respectively, 

Further the solution to (6) must be such that the pressure is single-valued. 
These equations and boundary conditions suffice to determine 4. From 
them it is clear that + depends on the geometrical parameters /3, y, the ratio 
of the peripheral speeds q1/q2, and the Reynolds number R. 

It is now proposed to consider the motion when the separation ae of the 
cylinder axes is small compared with the difference in length b - a  of their 
radii (that is, y 6 1). In the particular instance where the cylinders are 
coaxial the motion is axi-symmetric and independent of the Reynolds number. 
The stream function is then 

where 
+O(P, B, 42/41) = - 3A P2 - B 1% P, (9). 

and the vorticity is 

In  general, when the cylinders are nearly coaxial, it is assumed that the stream 
function + and the vorticity component 5 may be expanded in the forms 

50(8,42/41) = 2A' (11) 

m + = #o(P, B, 42/41) + 2 + d P ,  #, B, 42/41, R ) P ,  1 
n= 1 

m 

(1 -y2l2 5 = 2 ~ ~ 9  42/41) + 2 UP, A A 42/41, R ) Y ~ -  J 
It is the first order motion described by the first order terms with which this 
paper is principally concerned. The higher order terms are discussed briefly 
in the final section. 

A=l 
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Concerning the mode of expansion, note that the coordinate description 
of the bounding surfaces does not involve the expansion parameter y. This. 
is important if the expansion is to be used for large Reynolds numbers, and is 
the reason for introducing ‘ bipolar ’ coordinates. If the coordinate des- 
cription of the bounding surfaces involved y then the boundary conditions 
would have to be applied at surfaces y = 0 different from the cylinders. For 
this purpose, the velocity field at each boundary would have to be expanded 
in powers of ‘distance’ from the surface y = O  to the boundary, and it is 
unlikely that such series would converge when R is large. Note also that 
when y # 0, the motion described by Q&, pz/pl, /3) is not axi-symmetric. 
I n  this motion the circles p = constant and, in particular, the cylinders are 
streamlines, the speeds at the inner and outer cylinders being respectively 

When the expansions of Q, 5 and the analogous expansion of J are sub- 
stituted into the equations of motion (6 )  and the boundary conditions (S), and 
the leading terms isolated, we get 

p1d{J(L 4 9  Y)), W W B ,  $9 Y)}. 

Further, from the corresponding exact condition, the solution of ( 1 3 )  must be 
such that the first order perturbation in pressure is single-valued. 

The equations governing the first order motion contain the Reynolds 
number in the same way as the exact equations but have the merit of being 
linear and hence more tractable. In  that the convective velocity in the 
vorticity equation ( 1 3 )  is known, this equation is mathematically similar to 
Oseen’s equation and the generalisation of it discussed by Zeilon (1927) and 
Burgers (1921). In  the present case, there is, however, reason to believe that 
the perturbation to i / ~  described by the equations ( 1 3 )  is uniformly valid to 
O(y) even at large Reynolds numbers. A similar linearization of the 
equations of motion was discussed by Proudman (1956) who investigated the 
flow between two concentric spheres which rotate with slightly different 
angular velocities. In  the simpler configuration considered here the 
linearized equations may be solved exactly. This we proceed to do. 

3. THE FIRST ORDER SOLUTION 

It is evident from ( 1 3 )  and (14), that Q1 and vary with + according to the 
simple forms 

L 2  
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T h e  way in which ttfi and c1 vary with p is then determined from the differ- 
ential equations 

with the boundary conditions 

where primes denote differentiation with respect top. 
Provided that the vorticity of the motion described by & is not zero 

‘(A # 0),  g ( p )  satisfies a Bessel’s equation of order p = 2/(BRi+ 1) with 
independent variable x = 2/( - ARi)p. Thus 

g(p) = - 2CJp(x) - 2DH3.4, (18 )  

where J ,  (z), H: (z) denote respectively the Bessel function and Hankel 
function of order p, and C, D are constants to be determined. For definite- 
ness we take 1argp.I < A general integral of (16) may 
now be seen to be 

and [argxl = &. 

(19) 

where 

The  constants A,, B,, C, D may be evaluated from the boundary conditions 
(1 7). Whence 

A, = 4 - A - +D{12( 1) +I;( l)), 
Bl = - SB - +D{I,( 1) - I;( l)}, 

I1(j3)+(p2-1)@I~(/3), 
41 

where 
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Thus, when the vorticity of the unperturbed motion is non-zero ( A  # 0), 
the solution for $, is 

+, = Ap3 cos + + 21{ [Al p + B f + CI,(p) + DI,(p)] ei(>, (23) 

where I,, 12, A,, B,, C, D are defined in (20) to (22) ; whilst the solution for 
c, is 

5,  = - 4B?{[CJ,(z) + DH:(x)]ei+}. (24) 

The exceptional case in which the motion described by $,, is irrotational 
( A  = 0) arises when q2/q1 = 1 /j?. I n  this caseg(p) has the form 

g(p) = - 2Cp”- 2Dp-’. (25) 

The function f ( p )  may be obtained in the same way as when A # 0, the 
‘ Bessel ’ functionsJJz), H:(z) being replaced by p”, p+. Thus 

(26) 

where 11, I, are now 

The constants A,, B,, C, D are again related to I ,  and I, as in (21). The 
solution for $, is therefore formally the same as in (23), the leading term now 
vanishing and the functions I,(p), I&) being defined as in (27). The solution 
for (,, however, changes to 

5,  = - 41{[Cpu + Dp-+]eib). (28) 

The significance of these solutions is that they express in closed form the 
dependence of a viscous motion on Reynolds number. In  what follows they 
are used to derive the asymptotic behaviour of the motion when the Reynolds. 
number is large. Certain properties of this motion may of course be anti- 
cipated. Thus we may expect viscous action to be negligible save in thin 
layers at the cylinders, and in these layers the Prandtl approximation should 
hold. Further, the vorticity at infinite Reynolds number should be uniform, 
save at the cylinders (Batchelor 1956). Our main interest in deriving the 
asymptotic behaviour of $,, however, lies in the higher order corrections to 
the Prandtl approximation, or, equally, in the higher order terms of the 
asymptotic representations of 
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4. BEHAVIOUR OF THE SOLUTION TO THE FIRST ORDER VORTICITY 

As a preliminary to deriving the behaviour of the first order stream 
function #1 for large R, it is helpful to consider first the behaviour of the 
vorticity component cl. It is sufficient, for this purpose, to confine attention 
to  those properties that follow directly from the vorticity equation (13 a), 
when the way in which the vorticity component c1 varies periodically with I$ 
is known. In  view of the similarity of the approximate vorticity equation to 
the exact vorticity equation expressed in coordinates for which the stream- 
lines are coordinate lines, these properties may be of interest in suggesting 
general properties of the vorticity distribution for motions with closed stream- 
lines. 

Before proceeding further, it should be noted that the method of expan- 
ding the stream function as a series in y cannot be expected to hold for large R 
if the outer cylinder is at rest. The reason for this may be seen by referring 
to the boundary layer approximation. If the series were valid and a boundary 
layer existed on the outer cylinder, the speed of the inviscid flow at the outer 
cylinder would be expected to be O(yql). The thickness of the boundary 
layer there would then be O(~y-l /~R-l /~) .  Thus for a given value of y and 
a Reynolds number much greater than l/y (a necessary condition for the 
boundary layer to exist), the flow quantities of the boundary layer would 
not be analytic functions of y. For instance, the velocity gradient &@p 
at the outer cylinder would behave like 

A similar objection would apply if the inner cylinder were at rest. From 
here on it will therefore be assumed that neither cylinder is at rest. 

It will also be supposed that the cylinders rotate in the same sense. 
With this provision, the speed of the unperturbed flow does not vanish at 
any point of the fluid and some simplification thereby results in the behaviour 
.of the vorticity at large overall Reynolds numbers. 

The general solution to the first order vorticity equation for which 
has the appropriate dependence of 4 is given by (24) or, if A = 0, by (28). In  
both equations C, D are for the present to be regarded as undetermined 
constants. The behaviour of c1 for large Reynolds numbers is thus governed 
(C, D apart) by the symptotic behaviour of J,(x) and H:(a), or, if A = 0, by 
the asymptotic behaviour of p p  and p+. 

When the cylinder speeds are such that A # 0 and B # 0, the behaviour 
of J,(x), H:(x) when both order and argument are large is required. With 
some minor modification due to substituting for the variables p and x the 
more readily interpreted variables p ,  A, B and R, the asymptotic representa- 
tions obtained by Debye may be used. An auxiliary variable 0 is introduced 
which is related to the local speed 

EQUATION FOR LARGE R 

q1 y3’2R1/2 x (a function of 4, independent of y and R). 
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The asymptotic expansions of Jp(x), H:(x) for the values which x/p assume 
in this problem may then be written (see Watson 1944, also Olver 1954) 

where K,, K, are constants independent of p, whose values need not be known 
here, and P(R1/,) is an asymptotic series in R112 whose coefficients are regular 
functions of p, A ,  B. 

If the cylinder speeds are such that in the unperturbed motion A = 0 or 
B = 0, the behaviour of the vorticity component depends on the behaviour of 
pJ(Ri+l) ,  p-J(Ri+l)(see (28))or of J1(d( - Ri)p), H : ( d (  - Ri)p). The asymp- 
totic representations of these functions are analytically simpler than the 
asymptotic representations of JJx) ,  Hi(x)  when A # 0, B # 0 but are not 
otherwise importantly different. In fact, when A = 0 the asymptotic 
behaviour of pJ(Ri+l), is correctly represented by the respective 
expressions forJ,(z), H;(x) set out in (30) providing that log p is substituted 
for u. Likewise, when B = 0, the asymptotic behaviour of J l ( d ( - E ) p ) ,  
H:(2/( - Ri)p) is correctly represented by the above expressions for JW(z), 
Hi(z)  providing that p is substituted for u. In either case, the function 
adopted for u(p) is related to the local speed of the unperturbed flow as in (29). 

Thus, when the cylinders rotate in the same sense, the behaviour of the 
first order vorticity component at large Reynolds number may in every case 
be represented in the same asymptotic form : namely, 

5, N 92{~~ P(R1/2)ed(Ri)uf* +K2 P( - R1/2)e-J(Rib+~ 1 7  (31) 

where K,, K, are constants independent of position, P(R1/,) denotes an asymp- 
totic series in R112 ,and u(p) is related to the speed of the unperturbed motion 
as in (29). 

It follows immediately from the way in which u is related to the speed Q 
of the unperturbed motion, that u(p) is monotonic increasing ; the compli- 
cation that might have arisen if the speed of the unperturbed motion had 
vanished at some circle p = constant between the cylinders having been 
avoided by supposing that both cylinders rotate in the same sense. The 
vorticity component 5, thus resolves into two parts, both of which oscillate 
rapidly with changes in p, the amplitude of the first part decaying exponen- 
tially with increasing distance from the outer cylinder and the amplitude of 
the second part decaying exponentially with increasing distance from the 
inner cylinder. This ' exponential ' property of the two parts that contribute 
to 5, will be seen to play a significant role in determining the behaviour of the 
motion at large Reynolds number. 

5. BEHAVIOUR OF THE FIRST ORDER STREAM FUNCTION FOR LARGE R 
We now consider the behaviour for large R of the first order stream 

function IjlP It is to be anticipated that the behaviour of Ijll outside the 
boundary layers at each cylinder will differ from its behaviour inside these 
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layers. Accordingly the asymptotic behaviour of #, is derived firstly for 
points in the fluid whose distance from the nearest boundary is very much 
greater than a/R1i2 and secondly for points whose distance from the nearest 
boundary is O ( U / R - ~ / ~ ) .  

into the components It is convenient ta resolve the solution for 

#R = ZW{(CIl + D12)ei4}, 

a,bI = A p 3 c o s ~ + 2 9  Alp+  - ei4 . {( 3 1 
The component a,bR gives rise to the vorticity distribution 6, and will be referred 
to as the strongly rotational component, whilst 
and will be referred to as the weakly rotational component. The strongly 
rotational component may further be divided into two parts, namely 

makes no contribution to 

#R1 = ZW{CI, e”}, #R2 = ZW{DI, e”} 

each corresponding to one of the two parts of C1 distinguished above. 
For the case where the cylinder speeds are such that A # 0, the strongly 

rotational terms a,bRl, a,bR2 give rise to the respective vorticity distributions 
2W{CJ,(z)ei4}, 29{DHi(z)ei4}. The functions I ,  and I ,  which define the 
way in whicht,hR1, vary with p, are expressed in terms of simple integrals 
of the corresponding functions J J z ) ,  H:(z), and their asymptotic behaviour 
is therefore related to that of JI1(z), H:(z). The detailed definitions of Ily la 
were given in (20). Whence also 

On substituting for J,(z) and H:(z) the asymptotic expansions (30) we find 
that 

where the coefficients a,, a:, b,, b: are independent of R. As was to be 
expected, in view of the corresponding behaviour of J,(z), both I ,  and I;  are 
smaller at any point p than at the outer cylinder (p  = /3) by a factor of O ( C . ~ ’ * ~ ’ ~ ~ )  
where d2 = a(p) - a(p)> 0. Similarly, I, and 1; are both smaller at any point 
p than at the inner cylinder (p  = 1) by a factor of O ( C J ( * ~ ) ~ ~ ) ,  where 
d, = a(p) - a( 1) > 0. The asymptotic representations of t,hRl, a,bR2 and also 
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+I now follow from (33) and the expressions (Zl), (22) for the constants A ,  B, 
C, D. Hence, 

(p2- l)(lg~-p~)cos f$+ * I - - -  
A 
P 

where a,, & are independent of R, and ln, m, are independent of Randp. 
It is evident from (34), that the constants A,  B, C, D are such that the 
strongly rotational components +Rl, ‘GRZ and the weakly rotational component 

The fact that the components 
# J ~ ~  are transcendentally small save in thin layers of thickness O ( U R - ~ / ~ )  

at the inner and outer cylinders follows automatically from the ‘ exponential ’ 
behaviour of these components. 

I n  the special case where A = 0 the analysis may be retraced with only 
small changes, caused by replacing Jfi(z) ,  H:(z) by p”, p-”; and, on putting 
log p for 0, the results (34) are obtained unimpaired. The asymptotic 
representations (43) therefore hold for all relevant values of A.  

The asymptotic representation of the first order stream function +1 
appropriate to points whose distance from either boundary is much greater 
than aR1I2 is evidently that given by (34) for #I. For points whose distance 
from either cylinder is O(aR-1/2), the strongly rotational component is signi- 
ficant. Consider the flow near the inner cylinder. The asymptotic 
representation of t,b1 for a point p = 1 +tR1j2, where f is independent of 
Reynolds number, clearly includes +I and $R2 but not +Rl. Whence, from 
(34 b) and (34 c), we find after some rearrangement that for fixed 6, 

are each O(R1I2) at the bounding cylinders. 

where P, and Q, denote polynomials in [ of orders n and n - 1 respectively, 
I n  the same way the asymptotic representation of for a point p = B - $?-1/2, 
where 7 is independent of R, near the outer cylinder includes t,bl and t,bR1 but 
not +R2. Thus, from (34 a) and (34 c) we find that for fixed q 
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where S,  and T, denote polynomials in 7 (different from before) of orders n 
and n - 1 respectively. 

The main features of the motion described by these expansions are two- 
fold. The first is that the stream function +1 may be expressed both outside 
and, with suitably rescaled coordinates, inside the boundary layers as an 
asymptotic series in R1/2. The zero order stream function +o is independent 
of R, so that similar expansions hold for +o + ylCI1. The second feature is 
that the vorticity C1 associated with $1 is zero, to the accuracy of the 
asymptotic representation for in the region outside the boundary 
layers. The vorticity c0 is constant, so that the vorticity <,, + ySr associated 
with +o + y+l is again, to the accuracy of the asymptotic representation, 
uniform throughout the region outside the boundary layers. The leading 
terms of the expansions (34 c), (35), (36) for I,!J1 are those that would be obtained 
by the use of the boundary layer approximation. The leading term of t,bl, 

in particular, represents the first order perturbation to the inviscid motion 
(that is, the flow at infinite Reynolds number). As expected, the speed of the 
inviscid flow is non-zero at the bounding cylinders beingof amount 2&q2 cos 4 
at the inner cylinder and 2yq1 cos C$ at the outer cylinder. 

The behaviour of the stream function I,!Jo + yz,h1 outside the boundary layers 
is typical of more general closed motions. It was to be expected that I,!Jo + yi,h1 
would be expressible as an asymptotic series of the form 2 +(") R-"12 where the 
coefficients +(n) are independent of R, and further (Batchelor 1956) that the 
inviscid motion would have uniform vorticity. It now appears that the 
vorticity associated with the higher order terms of this expansion is also 
uniform. With the general assumption that the stream function behave at 
large Reynolds number R like L\ R-"12, where the coefficients +(n' are 
independent of R, this property is true of any two-dimensional motion whose 
streamlines are closed and lie in a domain free of shear layers. The proof 
of this result entails only a trivial extension by induction of the argument due 
to  Batchelor, and will not be given here (though it may perhaps be remarked 
that in the iteration, the fact that the vorticity associated with I$") is uniform 
follows from the requirement that the pressure distribution associated with 

In  the present problem the vorticity <o+y<l comprises a uniform 
distribution 2 A  and a distribution which outside the boundary layers 
becomes transcendentally small (i.e. o (R-"), for arbitrarily large n) when the 
Reynolds number is large. This latter distribution, it will be. recalled, 
divides into a part which decays ' exponentially ' rapidly with increasing 
distance from the inner boundary and a part which decays ' exponentially ' 
rapidly with distance from the outer boundary. Further, each of these 
parts represents the vorticity distribution, apart only from a constant term 
and a term which is transcendentally small, in the appropriate boundary 
layer. By regarding the vorticity distribution as a uniform field with two 
' exponentially decaying ' fields superposed, we gain a picture of the distri- 
bution which comprehends at once both the behaviour of the vorticity in 
the boundary layers and the result that the vorticity is uniform, apart from a 
transcendentally small term, outside the boundary layers. 

should be single-valued). 
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The concept of vorticity decaying so rapidly with increasing distance from 
the generating surfaces as to become transcendentally small outside a thin 
layer is familiar, and, in the boundary layer approximation, fundamental. 
The possible occurrence of a component in the vorticity distribution which 
does not vary rapidly with distance is less well recognised. The occurrence 
of such a component is, however, a priori to be expected. For any solution 
of the vorticity equation for which the diffusion term vanishes identically 
may supply a component which does not change rapidly when the Reynolds 
number is large. In  the case of a two-dimensional motion with closed 
streamlines whose stream function can be represented as above in the form 
2 $@) Rn12 it appears that the only possible slowly varying component is one 
for which the diffusion term vanishes. This is also true of certain axi- 
symmetric motions with closed streamlines (Batchelor 1956). 

Concerning the mode of representation of the stream fpnction 41 it is 
interesting to note that the asymptotic expansions (34 c), (35), (36) may be 
embraced in a single representation which holds uniformly throughout the 
fluid. its asymptotic 
series (34 c) and for z,hRl, $Rz their ' boundary layer ' representations and then 
.combining all the terms. 

Such a representation is achieved by writing for 

Thus, we put 

m m 

n=2 n=2 
+ 2 W((1, p + rn, p-l) ei4}R+I2 + 2 9 { Q n  ei6.Ju}Rn/2 + 

m 

n=2  

+ 2: a{ T, e+#-.J(iqJflql)q}R+-n/2 + o ( P I 2 ) .  (37) 

I n  the boundary layers, the weakly rotational component may be re-expressed 
-in re-scaled coordinates, and (37) then transforms into (35), (36). Outside 
the boundary layers, the strongly rotational component is transcendentally 
small, and (37) then reduces to (34c). A similar representation holds for the 
stream function $,, + y h .  Both representations correspond with the division 
of the vorticity field into a uniform component and two 'exponentially 
,decaying ' components. 

6. THE HIGHER ORDER APPROXIMATIONS OF BOUNDARY LAYER THEORY 

In  the following, an expansion for $1 which holds uniformly throughout 
the flow region is calculated by the methods of boundary layer theory. For 
simplicity attention is confined to the case in which A = 0. The key to the 
procedure to be used is the knowledge that $1 can be expressed as in (37). 
Lagerstrom & Cole have proposed that a stream function may generally be 
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expressed (flows with separating boundary layers excepted) as a sum of 

components of the form 2 Yn(zl, z2) PI2 and 2 g n ( x l ,  z2)Rn’2, where 

zl, x2 are coordinates such that z2 vanishes on the solid boundaries, and R is a 
Reynolds number. The second component is further supposed to be 
transcendentally small in the region outside the boundary layers. Once 
it has been established, or can be regarded as established, that the stream 
function may be expressed in this form it is not difficult to devise a procedure. 
for calculating the higher order corrections to the Prandtl approximation. 
The aim in what follows is to illustrate this procedure for a motion which is 
closed. 

W 00 

n=O n=O 

We begin, then, by assuming that for large R, 

+ 5 W n 2 ( 7 , + ) R - n ’ 2 + o ( P 9 ,  (38) 

the terms RJC, 4) being supposed transcendentally small for large C 
(i.e. o ([-n), for any n) and the terms Rn2(7, 4) being supposed transcendent- 
ally small for large 7. The leading summation represents the (truncated). 
asymptotic series for t,h1 appropriate to a fixed point in the fluid. 

As was remarked in the preceding section, the vorticity associated with 
the terms Yn must be uniform throughout the motion. Thus 

n = l  

V2Yn = a n ,  (39) 

where the 6, are constants independent of position. To  obtain equations for 
Rnl(t ,+) we consider the boundary layer at the inner cylinder. The 
contribution of the terms gn2 to $1 may here be neglected. On expressing 
the variables that occur in the equations of motion (13) in terms of 6, + and 
then expanding them in powers of Ry2, we get 

‘ j  . . . . . . . . . . . . . . . . .  
where a = 1. The equations for 9fn2(q, 4 )  may be obtained in a similar way 
and, in fact, the first two equations are correctly given by (40) if Rll, R21, 5 
are replaced by R12, R,,, - q respectively and a is put equal to 8. It may be 
noted that these equations for Rnl, R,, contain no terms from the weakly 
rotational component of t,bl. In general, 
the weakly rotational component will contribute to the convection velocity 
in the vorticity equation (though, of course, it will not in general contribute to. 
the vorticity derivatives). 

This would not be generally true. 
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The boundary conditions for the coefficients 9, of the weakly rotational 

fl0(/3, 4) = constant, 

component are 

90(l, 4) = 0, 

9n(1,4) + Wnl(O, 4) = 0 , yn(/3, 4) + Wn2(0, 4) = constant (n 2 I), 

-whilst the boundary conditions for the coefficients W,,, 9tn2 are 

In  addition, each of the $n, W,, and Wn2 and the associated pressure distri- 
butions must be periodic functions of 4. The conditions on Wnl, Wn2 at 
-the outer edges of the boundary layers result from supposing that these terms 
are transcendentally small outside the boundary layers. The boundary 
conditions for the 9, derive from the requirement that the normal component 
.of velocity at the boundary associated with these terms should annul the 
normal component of velocity at the boundary associated with the terms 
Bnl, Wn2. The boundary conditions for the Bnl, gn2 arise from adjusting 
the tangential component of velocity associated with the terms 9, to the 
tangential velocity of the boundary. 

The iterative solution of these equations is complicated by the fact that 
the equations that govern 9,((39) and (41)) are incomplete. That is, if 
Wnl, grit are supposed known, 9, is undetermined to the extent of two 
constants. One of these constants is 6, and represents the (uniform) 
vorticity associated with 9,. The other, I?, say, arises because the fluid 
-encircles a closed boundary, and may be defined as the circulation round the 
inner cylinder of the motion associated with 9,. 

In  the present problem it is a priori obvious from the symmetry of the 
configuration that 6, and I?, vanish. (This may be seen by considering the 
motion in which the sign of y is reversed.) The indeterminancy in 9, is 
thus resolved immediately. T o  resolve the indeterminancy without 
recourse to a symmetry argument, it is necessary to pass to the equations 
governing Wn+l,l, 9n+l,2. On solving for a condition on the 
tangential velocity distribution a&( 1, $)lap emerges. Similarly, on solving 
fbr FZn+l, a condition emerges on the tangential velocity M,(/3, $)/ap, From 
these two conditions, we may then deduce that 6, = 0, I?, = 0, and so on. 
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The equations for 9n, gm1, gn2 may otherwise be solved without further 
difficulty. For the leading terms we get 

when these terms are combined together as in (38) they yield an expression 
for which holds to O(R-l) uniformly throughout the fluid. 

7. THE TERMS OF HIGHER ORDER IN y 

For the sake of completeness it is worth noting that the higher order terms 
of the perturbation of the motion may be solved in essentially the same way as 
the first order terms. 

When the equations governing the higher order terms l,, $n of the 
expansions for the vorticity component 5 and stream function a# are examined, 
it is seen that each varies with 4 according to the respective forms 

n m. 

The equations governing g,,s, fn,+ are then 

gn,s = RGn.8, (45 a} 

where Gn,s, Fn,s are defined by 
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together with the condition that each term of the expression for the pressure 
is singled-valued. 

These equations for the component functions fn,s(p) of the higher order 
perturbations +, are similar to the equations for the component termf(p) of 
the first order stream function and may be solved in a similar manner. 
The only features which call for special treatment are the interaction terms 
Fn,s(p) and G,Jp) and the components of the vorticity that do not vary with 
4. The interaction terms in the equations forf,,s depend on the components 
fr,, for r = 1, 2 ... n - 1, and are determined iteratively. To  determine the 
components of the vorticity that do not vary with 4, it is necessary to use the 
pressure condition. It is found on examining the momentum equations 
that the necessary and sufficient condition for the pressure to be single- 
valued is that 

whence 

The corresponding term of the stream function, namelyf,,,, may now be 
determined in the same way as the other terms fn,s, s # 0. 

Enough has 
been set down to show that the solution may be completed in essentially the 
same way as for the first order.terms. (The homogeneous form of (45 a) now 
has the general solution 2CJp~(z+) +2DH,3(x+), where p+ = 1/( -RAsi,), 
z” = 2/(RBsi+ 1) and A # 0). Moreover the solution may be expected to. 
behave at large Reynolds numbers in much the same way as did the first 
order terms. In particular it may be tentatively inferred that for large R,. 

the vorticity may be expressed as the sum of a constant term 2 g2n,0 yZn, 

and an infinity of terms which vary exponentially rapidly with R. It may 
also be tentatively inferred that the stream functions lfFn may at large Reynolds. 
numbers be expressed as in (38). If this proves true, the expansions of #, 5 
in powers of y may be expected to converge uniformly with respect to R,. 
when y is sufficiently small. 

It is not proposed to investigate these equations further. 

co 
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